SparseEmbed¶
SparseEmbed retriever¶
Retrieving documents using SparseEmbed. SparseEmbed first retrieve documents following Splade procedure and then computes dot products of embeddings between common activated tokens.
from neural_cherche import models, retrieve
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
batch_size = 32
model = models.SparseEmbed(
model_name_or_path="raphaelsty/neural-cherche-sparse-embed",
device=device,
)
documents = [
{"id": "doc1", "title": "Paris", "text": "Paris is the capital of France."},
{"id": "doc2", "title": "Montreal", "text": "Montreal is the largest city in Quebec."},
{"id": "doc3", "title": "Bordeaux", "text": "Bordeaux in Southwestern France."},
]
retriever = retrieve.SparseEmbed(
key="id",
on=["title", "text"],
model=model
)
documents_embeddings = retriever.encode_documents(
documents=documents,
batch_size=batch_size,
)
retriever.add(
documents_embeddings=documents_embeddings,
)
queries = [
"What is the capital of France?",
"What is the largest city in Quebec?",
"Where is Bordeaux?",
]
queries_embeddings = retriever.encode_queries(
queries=queries,
batch_size=batch_size,
)
scores = retriever(
queries_embeddings=queries_embeddings,
k=100,
)
scores
[[{'id': 'doc1', 'similarity': 144.48985290527344},
{'id': 'doc2', 'similarity': 111.0398941040039},
{'id': 'doc3', 'similarity': 80.72007751464844}],
[{'id': 'doc2', 'similarity': 169.8221435546875},
{'id': 'doc1', 'similarity': 125.84573364257812},
{'id': 'doc3', 'similarity': 77.57147216796875}],
[{'id': 'doc1', 'similarity': 103.0795669555664},
{'id': 'doc2', 'similarity': 81.4903564453125},
{'id': 'doc3', 'similarity': 77.25212097167969}]]
SparseEmbed ranker¶
Ranking documents using SparseEmbed. The following code use BM25 to retrieve documents and then rank them using SparseEmbed.
from neural_cherche import models, rank, retrieve
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
batch_size = 32
documents = [
{"id": "doc1", "title": "Paris", "text": "Paris is the capital of France."},
{"id": "doc2", "title": "Montreal", "text": "Montreal is the largest city in Quebec."},
{"id": "doc3", "title": "Bordeaux", "text": "Bordeaux in Southwestern France."},
]
retriever = retrieve.BM25(
key="id",
on=["title", "text"],
)
model = models.SparseEmbed(
model_name_or_path="raphaelsty/neural-cherche-sparse-embed",
device=device,
)
ranker = rank.SparseEmbed(
key="id",
on=["title", "text"],
model=model
)
retriever_documents_embeddings = retriever.encode_documents(
documents=documents,
)
retriever.add(
documents_embeddings=retriever_documents_embeddings,
)
ranker_documents_embeddings = ranker.encode_documents(
documents=documents,
batch_size=batch_size,
)
Once we have created our indexes, we can use the ranker to re-rank the candidates retrieved by the retriever.
queries = [
"What is the capital of France?",
"What is the largest city in Quebec?",
"Where is Bordeaux?",
]
retriever_queries_embeddings = retriever.encode_queries(
queries=queries,
)
ranker_queries_embeddings = ranker.encode_queries(
queries=queries,
batch_size=batch_size,
)
candidates = retriever(
queries_embeddings=retriever_queries_embeddings,
k=1000,
)
scores = ranker(
documents=candidates,
queries_embeddings=ranker_queries_embeddings,
documents_embeddings=ranker_documents_embeddings,
k=100,
batch_size=32,
)
scores
[[{'id': 'doc1', 'similarity': 450.2735},
{'id': 'doc3', 'similarity': 184.59885},
{'id': 'doc2', 'similarity': 98.53701}],
[{'id': 'doc2', 'similarity': 391.74216},
{'id': 'doc1', 'similarity': 111.45184},
{'id': 'doc3', 'similarity': 51.19094}],
[{'id': 'doc3', 'similarity': 349.82397},
{'id': 'doc1', 'similarity': 74.993576},
{'id': 'doc2', 'similarity': 33.37598}]]