Splade¶
Retriever class.
Parameters¶
-
key (str)
Document unique identifier.
-
on (list[str])
Document texts.
-
model (models.Splade)
SparsEmbed model.
-
tokenizer_parallelism (str) – defaults to
false
Examples¶
>>> from neural_cherche import models, retrieve
>>> from pprint import pprint
>>> import torch
>>> _ = torch.manual_seed(42)
>>> documents = [
... {"id": 0, "document": "Food"},
... {"id": 1, "document": "Sports"},
... {"id": 2, "document": "Cinema"},
... ]
>>> queries = ["Food", "Sports", "Cinema"]
>>> model = models.Splade(
... model_name_or_path="raphaelsty/neural-cherche-sparse-embed",
... device="mps",
... )
>>> retriever = retrieve.Splade(
... key="id",
... on="document",
... model=model
... )
>>> documents_embeddings = retriever.encode_documents(
... documents=documents,
... batch_size=32,
... )
>>> queries_embeddings = retriever.encode_queries(
... queries=queries,
... batch_size=32,
... )
>>> retriever = retriever.add(
... documents_embeddings=documents_embeddings,
... )
>>> scores = retriever(
... queries_embeddings=queries_embeddings,
... k=3,
... )
>>> pprint(scores)
[[{'id': 0, 'similarity': 489.65244},
{'id': 2, 'similarity': 338.9705},
{'id': 1, 'similarity': 332.3472}],
[{'id': 1, 'similarity': 470.40497},
{'id': 2, 'similarity': 301.56982},
{'id': 0, 'similarity': 278.8062}],
[{'id': 2, 'similarity': 472.487},
{'id': 1, 'similarity': 341.8396},
{'id': 0, 'similarity': 319.97287}]]
Methods¶
call
Retrieve documents from batch of queries.
Parameters
- queries_embeddings (dict[str, scipy.sparse._csr.csr_matrix])
- k (int) – defaults to
None
- batch_size (int) – defaults to
2000
- tqdm_bar (bool) – defaults to
True
add
Add new documents to the TFIDF retriever. The tfidf won't be refitted.
Parameters
- documents_embeddings (dict[str, scipy.sparse._csr.csr_matrix])
encode_documents
Encode queries into sparse matrix.
Parameters
- documents (list[dict])
- batch_size (int) – defaults to
32
- tqdm_bar (bool) – defaults to
True
- query_mode (bool) – defaults to
False
- kwargs
encode_queries
Encode queries into sparse matrix.
Parameters
- queries (list[str])
- batch_size (int) – defaults to
32
- tqdm_bar (bool) – defaults to
True
- query_mode (bool) – defaults to
True
- kwargs
top_k
Return the top k documents for each query.
Parameters
- similarities (scipy.sparse._csc.csc_matrix)
- k (int)