Transformer¶
Transformer for contextual representation of entities.
Parameters¶
-
model
-
tokenizer
-
entities
-
relations
-
scoring – defaults to
TransE scoring
-
hidden_dim – defaults to
None
-
max_length – defaults to
None
-
gamma – defaults to
9
-
device – defaults to
cuda
Attributes¶
-
embeddings
Extracts embeddings.
-
name
Examples¶
>>> import torch
>>> _ = torch.manual_seed(42)
>>> from ckb import models
>>> from ckb import datasets
>>> from transformers import BertTokenizer
>>> from transformers import BertModel
>>> dataset = datasets.Semanlink(1)
>>> model = models.Transformer(
... model = BertModel.from_pretrained('bert-base-uncased'),
... tokenizer = BertTokenizer.from_pretrained('bert-base-uncased'),
... entities = dataset.entities,
... relations = dataset.relations,
... gamma = 9,
... device = 'cpu',
... )
>>> sample = torch.tensor([[0, 0, 0], [2, 2, 2]])
>>> model(sample)
tensor([[3.5500],
[3.2861]], grad_fn=<ViewBackward>)
>>> sample = torch.tensor([[0, 0, 1], [2, 2, 1]])
>>> model(sample)
tensor([[-227.8486],
[-197.0484]], grad_fn=<ViewBackward>)
>>> sample = torch.tensor([[1, 0, 0], [1, 2, 2]])
>>> model(sample)
tensor([[-227.8378],
[-196.5193]], grad_fn=<ViewBackward>)
>>> sample = torch.tensor([[0, 0, 0], [2, 2, 2]])
>>> negative_sample = torch.tensor([[1], [1]])
>>> model(sample, negative_sample, mode='head-batch')
tensor([[-227.8378],
[-196.5193]], grad_fn=<ViewBackward>)
>>> model(sample, negative_sample, mode='tail-batch')
tensor([[-227.8486],
[-197.0484]], grad_fn=<ViewBackward>)
Methods¶
call
Call self as a function.
Parameters
- input
- kwargs
add_module
Adds a child module to the current module.
The module can be accessed as an attribute using the given name. Args: name (string): name of the child module. The child module can be accessed from this module using the given name module (Module): child module to be added to the module.
Parameters
- name (str)
- module (Union[ForwardRef('Module'), NoneType])
apply
Applies fn
recursively to every submodule (as returned by .children()
) as well as self. Typical use includes initializing the parameters of a model (see also :ref:nn-init-doc
).
Args: fn (:class:Module
-> None): function to be applied to each submodule Returns: Module: self Example:: >>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[ 1., 1.], [ 1., 1.]]) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[ 1., 1.], [ 1., 1.]]) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
Parameters
- fn (Callable[[ForwardRef('Module')], NoneType])
batch
Process input sample.
Parameters
- sample
- negative_sample – defaults to
None
- mode – defaults to
None
bfloat16
Casts all floating point parameters and buffers to bfloat16
datatype.
Returns: Module: self
buffers
Returns an iterator over module buffers.
Args: recurse (bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Yields: torch.Tensor: module buffer Example:: >>> for buf in model.buffers(): >>> print(type(buf), buf.size())
Parameters
- recurse (bool) – defaults to
True
children
Returns an iterator over immediate children modules.
Yields: Module: a child module
cpu
Moves all model parameters and buffers to the CPU.
Returns: Module: self
cuda
Moves all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized. Arguments: device (int, optional): if specified, all parameters will be copied to that device Returns: Module: self
Parameters
- device (Union[int, torch.device, NoneType]) – defaults to
None
default_batch
distill
Default distillation method
Parameters
- sample
- negative_sample – defaults to
None
- mode – defaults to
None
double
Casts all floating point parameters and buffers to double
datatype.
Returns: Module: self
encode
Encode input sample, negative sample with respect to the mode.
Parameters
- sample
- negative_sample – defaults to
None
- mode – defaults to
None
encoder
Encode input entities descriptions.
Parameters: e (list): List of description of entities. Returns: Torch tensor of encoded entities.
Parameters
- e
eval
Sets the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. :class:Dropout
, :class:BatchNorm
, etc. This is equivalent with :meth:self.train(False) <torch.nn.Module.train>
. Returns: Module: self
extra_repr
Set the extra representation of the module
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float
Casts all floating point parameters and buffers to float datatype.
Returns: Module: self
format_sample
Adapt input tensor to compute scores.
Parameters
- sample
- negative_sample – defaults to
None
forward
Compute scores of input sample, negative sample with respect to the mode.
Parameters
- sample
- negative_sample – defaults to
None
- mode – defaults to
None
half
Casts all floating point parameters and buffers to half
datatype.
Returns: Module: self
head_batch
Used to get faster when computing scores for negative samples.
Parameters
- sample
- negative_sample
load_state_dict
Copies parameters and buffers from :attr:state_dict
into this module and its descendants. If :attr:strict
is True
, then the keys of :attr:state_dict
must exactly match the keys returned by this module's :meth:~torch.nn.Module.state_dict
function.
Arguments: state_dict (dict): a dict containing parameters and persistent buffers. strict (bool, optional): whether to strictly enforce that the keys in :attr:state_dict
match the keys returned by this module's :meth:~torch.nn.Module.state_dict
function. Default: True
Returns: NamedTuple
with missing_keys
and unexpected_keys
fields: * missing_keys is a list of str containing the missing keys * unexpected_keys is a list of str containing the unexpected keys
Parameters
- state_dict (Dict[str, torch.Tensor])
- strict (bool) – defaults to
True
modules
Returns an iterator over all modules in the network.
Yields: Module: a module in the network Note: Duplicate modules are returned only once. In the following example, l
will be returned only once. Example:: >>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
named_buffers
Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args: prefix (str): prefix to prepend to all buffer names. recurse (bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Yields: (string, torch.Tensor): Tuple containing the name and buffer Example:: >>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())
Parameters
- prefix (str) – defaults to ``
- recurse (bool) – defaults to
True
named_children
Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields: (string, Module): Tuple containing a name and child module Example:: >>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)
named_modules
Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Yields: (string, Module): Tuple of name and module Note: Duplicate modules are returned only once. In the following example, l
will be returned only once. Example:: >>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
Parameters
- memo (Union[Set[ForwardRef('Module')], NoneType]) – defaults to
None
- prefix (str) – defaults to ``
named_parameters
Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args: prefix (str): prefix to prepend to all parameter names. recurse (bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. Yields: (string, Parameter): Tuple containing the name and parameter Example:: >>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())
Parameters
- prefix (str) – defaults to ``
- recurse (bool) – defaults to
True
negative_encoding
parameters
Returns an iterator over module parameters.
This is typically passed to an optimizer. Args: recurse (bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. Yields: Parameter: module parameter Example:: >>> for param in model.parameters(): >>> print(type(param), param.size())
Parameters
- recurse (bool) – defaults to
True
register_backward_hook
Registers a backward hook on the module.
.. warning :: The current implementation will not have the presented behavior for complex :class:Module
that perform many operations. In some failure cases, :attr:grad_input
and :attr:grad_output
will only contain the gradients for a subset of the inputs and outputs. For such :class:Module
, you should use :func:torch.Tensor.register_hook
directly on a specific input or output to get the required gradients. The hook will be called every time the gradients with respect to module inputs are computed. The hook should have the following signature:: hook(module, grad_input, grad_output) -> Tensor or None The :attr:grad_input
and :attr:grad_output
may be tuples if the module has multiple inputs or outputs. The hook should not modify its arguments, but it can optionally return a new gradient with respect to input that will be used in place of :attr:grad_input
in subsequent computations. :attr:grad_input
will only correspond to the inputs given as positional arguments. Returns: :class:torch.utils.hooks.RemovableHandle
: a handle that can be used to remove the added hook by calling handle.remove()
Parameters
- hook (Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, torch.Tensor]])
register_buffer
Adds a buffer to the module.
This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm's running_mean
is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting :attr:persistent
to False
. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's :attr:state_dict
. Buffers can be accessed as attributes using given names. Args: name (string): name of the buffer. The buffer can be accessed from this module using the given name tensor (Tensor): buffer to be registered. persistent (bool): whether the buffer is part of this module's :attr:state_dict
. Example:: >>> self.register_buffer('running_mean', torch.zeros(num_features))
Parameters
- name (str)
- tensor (Union[torch.Tensor, NoneType])
- persistent (bool) – defaults to
True
register_forward_hook
Registers a forward hook on the module.
The hook will be called every time after :func:forward
has computed an output. It should have the following signature:: hook(module, input, output) -> None or modified output The input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward
. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after :func:forward
is called. Returns: :class:torch.utils.hooks.RemovableHandle
: a handle that can be used to remove the added hook by calling handle.remove()
Parameters
- hook (Callable[..., NoneType])
register_forward_pre_hook
Registers a forward pre-hook on the module.
The hook will be called every time before :func:forward
is invoked. It should have the following signature:: hook(module, input) -> None or modified input The input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward
. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned(unless that value is already a tuple). Returns: :class:torch.utils.hooks.RemovableHandle
: a handle that can be used to remove the added hook by calling handle.remove()
Parameters
- hook (Callable[..., NoneType])
register_parameter
Adds a parameter to the module.
The parameter can be accessed as an attribute using given name. Args: name (string): name of the parameter. The parameter can be accessed from this module using the given name param (Parameter): parameter to be added to the module.
Parameters
- name (str)
- param (Union[torch.nn.parameter.Parameter, NoneType])
requires_grad_
Change if autograd should record operations on parameters in this module.
This method sets the parameters' :attr:requires_grad
attributes in-place. This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training). Args: requires_grad (bool): whether autograd should record operations on parameters in this module. Default: True
. Returns: Module: self
Parameters
- requires_grad (bool) – defaults to
True
save
share_memory
state_dict
Returns a dictionary containing a whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Returns: dict: a dictionary containing a whole state of the module Example:: >>> module.state_dict().keys() ['bias', 'weight']
Parameters
- destination – defaults to
None
- prefix – defaults to ``
- keep_vars – defaults to
False
tail_batch
Used to get faster when computing scores for negative samples.
Parameters
- sample
- negative_sample
to
Moves and/or casts the parameters and buffers.
This can be called as .. function:: to(device=None, dtype=None, non_blocking=False) .. function:: to(dtype, non_blocking=False) .. function:: to(tensor, non_blocking=False) .. function:: to(memory_format=torch.channels_last) Its signature is similar to :meth:torch.Tensor.to
, but only accepts floating point desired :attr:dtype
s. In addition, this method will only cast the floating point parameters and buffers to :attr:dtype
(if given). The integral parameters and buffers will be moved :attr:device
, if that is given, but with dtypes unchanged. When :attr:non_blocking
is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices. See below for examples. .. note:: This method modifies the module in-place. Args: device (:class:torch.device
): the desired device of the parameters and buffers in this module dtype (:class:torch.dtype
): the desired floating point type of the floating point parameters and buffers in this module tensor (torch.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module memory_format (:class:torch.memory_format
): the desired memory format for 4D parameters and buffers in this module (keyword only argument) Returns: Module: self Example:: >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16)
Parameters
- args
- kwargs
train
Sets the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. :class:Dropout
, :class:BatchNorm
, etc. Args: mode (bool): whether to set training mode (True
) or evaluation mode (False
). Default: True
. Returns: Module: self
Parameters
- mode (bool) – defaults to
True
type
Casts all parameters and buffers to :attr:dst_type
.
Arguments: dst_type (type or string): the desired type Returns: Module: self
Parameters
- dst_type (Union[torch.dtype, str])
zero_grad
Sets gradients of all model parameters to zero. See similar function under :class:torch.optim.Optimizer
for more context.
Arguments: set_to_none (bool): instead of setting to zero, set the grads to None. See :meth:torch.optim.Optimizer.zero_grad
for details.
Parameters
- set_to_none (bool) – defaults to
False