Skip to content

Lunr

retrieve.Lunr is a wrapper of Lunr.py. It is a powerful and practical solution for searching inside a corpus of documents without using a retriever such as Elasticsearch when it is not needed. Lunr stores an inverted index in memory.

>>> from cherche import retrieve

>>> documents = [
...    {
...        "id": 0,
...        "article": "Paris is the capital and most populous city of France",
...        "title": "Paris",
...        "url": "https://en.wikipedia.org/wiki/Paris"
...    },
...    {
...        "id": 1,
...        "article": "Paris has been one of Europe major centres of finance, diplomacy , commerce , fashion , gastronomy , science , and arts.",
...        "title": "Paris",
...        "url": "https://en.wikipedia.org/wiki/Paris"
...    },
...    {
...        "id": 2,
...        "article": "The City of Paris is the centre and seat of government of the region and province of Île-de-France .",
...        "title": "Paris",
...        "url": "https://en.wikipedia.org/wiki/Paris"
...    }
... ]

>>> retriever = retrieve.Lunr(key="id", on=["title", "article"], documents=documents)

>>> retriever("france", k=30)
[{'id': 0, 'similarity': 0.605}, {'id': 2, 'similarity': 0.47}]

Batch retrieval

If we have several queries for which we want to retrieve the top k documents then we can pass a list of queries to the retriever. In batch-mode, retriever returns a list of list of documents instead of a list of documents.

>>> retriever(["france", "arts", "capital"], k=30)
[[{'id': 0, 'similarity': 0.605}, {'id': 2, 'similarity': 0.47}], # Match query 1
 [{'id': 1, 'similarity': 0.802}], # Match query 2
 [{'id': 0, 'similarity': 1.263}]] # Match query 3

Map keys to documents

>>> retriever += documents
>>> retriever("arts")
[{'id': 1,
  'article': 'Paris has been one of Europe major centres of finance, diplomacy , commerce , fashion , gastronomy , science , and arts.',
  'title': 'Paris',
  'url': 'https://en.wikipedia.org/wiki/Paris',
  'similarity': 0.802}]