Fuzz¶
retrieve.Fuzz
is a wrapper of RapidFuzz. It is a blazing fast library dedicated to fuzzy string matching. Documents can be indexed online with this retriever using the add
method.
RapidFuzz provides more scoring functions for the fuzzy string matching task. We can select the most suitable method for our dataset with the fuzzer
parameter. The default scoring function is fuzz.partial_ratio
.
>>> from cherche import retrieve
>>> from rapidfuzz import fuzz
>>> documents = [
... {
... "id": 0,
... "article": "Paris is the capital and most populous city of France",
... "title": "Paris",
... "url": "https://en.wikipedia.org/wiki/Paris"
... },
... {
... "id": 1,
... "article": "Paris has been one of Europe major centres of finance, diplomacy , commerce , fashion , gastronomy , science , and arts.",
... "title": "Paris",
... "url": "https://en.wikipedia.org/wiki/Paris"
... },
... {
... "id": 2,
... "article": "The City of Paris is the centre and seat of government of the region and province of Île-de-France .",
... "title": "Paris",
... "url": "https://en.wikipedia.org/wiki/Paris"
... }
... ]
# List of available scoring function
>>> scoring = [
... fuzz.ratio,
... fuzz.partial_ratio,
... fuzz.token_set_ratio,
... fuzz.partial_token_set_ratio,
... fuzz.token_sort_ratio,
... fuzz.partial_token_sort_ratio,
... fuzz.token_ratio,
... fuzz.partial_token_ratio,
... fuzz.WRatio,
... fuzz.QRatio,
... ]
>>> retriever = retrieve.Fuzz(
... key = "id",
... on = ["title", "article"],
... fuzzer = fuzz.partial_ratio, # Choose the scoring function.
... )
# Index documents
>>> retriever.add(documents)
>>> retriever("fashion", k=2)
[{'id': 1, 'similarity': 100.0}, {'id': 0, 'similarity': 46.15384615384615}]
Batch retrieval¶
If we have several queries for which we want to retrieve the top k documents then we can pass a list of queries to the retriever. In batch-mode, retriever returns a list of list of documents instead of a list of documents.
>>> retriever(["france", "arts", "capital"], k=30)
[[{'id': 0, 'similarity': 100.0}, # Match query 1
{'id': 2, 'similarity': 100.0},
{'id': 1, 'similarity': 66.66666666666667}],
[{'id': 1, 'similarity': 100.0}, # Match query 2
{'id': 0, 'similarity': 75.0},
{'id': 2, 'similarity': 75.0}],
[{'id': 0, 'similarity': 100.0}, # Match query 3
{'id': 1, 'similarity': 44.44444444444444},
{'id': 2, 'similarity': 44.44444444444444}]]
Map keys to documents¶
We can map documents to retrieved keys.
>>> retriever += documents
>>> retriever("fashion", k=30)
[{'id': 1,
'article': 'Paris has been one of Europe major centres of finance, diplomacy , commerce , fashion , gastronomy , science , and arts.',
'title': 'Paris',
'url': 'https://en.wikipedia.org/wiki/Paris',
'similarity': 100.0},
{'id': 0,
'article': 'Paris is the capital and most populous city of France',
'title': 'Paris',
'url': 'https://en.wikipedia.org/wiki/Paris',
'similarity': 46.15384615384615},
{'id': 2,
'article': 'The City of Paris is the centre and seat of government of the region and province of Île-de-France .',
'title': 'Paris',
'url': 'https://en.wikipedia.org/wiki/Paris',
'similarity': 46.15384615384615}]